Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes

نویسندگان

  • Naiara Rodríguez-Ezpeleta
  • Henner Brinkmann
  • Suzanne C. Burey
  • Béatrice Roure
  • Gertraud Burger
  • Wolfgang Löffelhardt
  • Hans J. Bohnert
  • Hervé Philippe
  • B. Franz Lang
چکیده

Between 1 and 1.5 billion years ago, eukaryotic organisms acquired the ability to convert light into chemical energy through endosymbiosis with a Cyanobacterium (e.g.,). This event gave rise to "primary" plastids, which are present in green plants, red algae, and glaucophytes ("Plantae" sensu Cavalier-Smith). The widely accepted view that primary plastids arose only once implies two predictions: (1) all plastids form a monophyletic group, as do (2) primary photosynthetic eukaryotes. Nonetheless, unequivocal support for both predictions is lacking (e.g.,). In this report, we present two phylogenomic analyses, with 50 genes from 16 plastid and 15 cyanobacterial genomes and with 143 nuclear genes from 34 eukaryotic species, respectively. The nuclear dataset includes new sequences from glaucophytes, the less-studied group of primary photosynthetic eukaryotes. We find significant support for both predictions. Taken together, our analyses provide the first strong support for a single endosymbiotic event that gave rise to primary photosynthetic eukaryotes, the Plantae. Because our dataset does not cover the entire eukaryotic diversity (but only four of six major groups in), further testing of the monophyly of Plantae should include representatives from eukaryotic lineages for which currently insufficient sequence information is available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene sampling can bias multi-gene phylogenetic inferences: the relationship between red algae and green plants as a case study.

The monophyly of Plantae including glaucophytes, red algae, and green plants (green algae plus land plants) has been recovered in recent phylogenetic analyses of large multi-gene data sets (e.g., those including >30,000 amino acid [aa] positions). On the other hand, Plantae monophyly has not been stably reconstructed in inferences from multi-gene data sets with fewer than 10,000 aa positions. A...

متن کامل

An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids

Photosynthesis evolved in eukaryotes by the endosymbiosis of a cyanobacterium, the future plastid, within a heterotrophic host. This primary endosymbiosis occurred in the ancestor of Archaeplastida, a eukaryotic supergroup that includes glaucophytes, red algae, green algae, and land plants [1-4]. However, although the endosymbiotic origin of plastids from a single cyanobacterial ancestor is fir...

متن کامل

Phylogeny of Calvin cycle enzymes supports Plantae monophyly.

Photosynthesis is a critical biochemical process on our planet providing food for most life. The common ancestor of plants and their algal sisters gained photosynthesis through the engulfment and retention of a cyanobacterial primary endosymbiont that evolved into a photosynthetic organelle, the plastid (Bhattacharya et al., 2004). In photosynthetic eukaryotes, the essential series of reactions...

متن کامل

Early photosynthetic eukaryotes inhabited low-salinity habitats.

The early evolutionary history of the chloroplast lineage remains an open question. It is widely accepted that the endosymbiosis that established the chloroplast lineage in eukaryotes can be traced back to a single event, in which a cyanobacterium was incorporated into a protistan host. It is still unclear, however, which Cyanobacteria are most closely related to the chloroplast, when the plast...

متن کامل

Sure facts and open questions about the origin and evolution of photosynthetic plastids.

Some eukaryotic groups carry out photosynthesis thanks to plastids, which are endosymbiotic organelles derived from cyanobacteria. Increasing evidence suggests that the plastids from green plants, red algae, and glaucophytes arose directly from a single common primary symbiotic event between a cyanobacterium and a phagotrophic eukaryotic host. They are therefore known as primary plastids. All o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005